
Identifying Parallel Jobs for Multi-Physics

Simulators Scheduling

Renata M. de Carvalho, Ricardo M. F. Lima, Adriano L. I. de Oliveira
Center of Informatics

Felix Christian Guimaraes Santos
Department of Mechanics

Federal University of Pernambuco

Recife, Pernambuco, Brazil

fcgs@demec.ufpe.br

Federal University of Pernambuco

Recife, Pernambuco, Brazil

rwm@cin.ufpe.br, rmfl@cin.ufpe.br, alio@cin.ufpe.br

Abstract-Real problem simulations involving physic phenom­
ena can demand too much execution time. To improve the
performance of these simulations it is necessary to have an
approach to parallelize the processes that compose the simulation.
MPhyScaS (Multi-Physics and Multi-Scale Solver Environment)
is an environment dedicated to the automatic development of
simulators. Each MPhyScaS simulation demands a great amount
of time. To parallelize MPhyScaS simulations, the approach used
should define a hierarchical parallel structure. The aim of the
work herein presented is to identify parallel jobs and dependent
ones. The presented model is based on Coloured Petri Nets (CPN).
This information will be input to a scheduling algorithm.

Index Terms-Parallel jobs, dependencies, Coloured Petri Nets,
scheduling.

I. INT RODUCTION

MPhyScas (Multi-Physics Multi-Scale Solver Environment)
is a computational system dedicated to the automatic develop­
ment of simulators based on the finite element method [1].
These simulators models the behavior of a set of interacting
phenomena in space and time. These phenomena are usually of
different nature (deformation of solids, heat transfer, etc.) and
may be defined in different scales of behavior (macro and mi­
cro mechanical behavior of materials). During the simulation,
part of one phenomenons data may depends on information
from other phenomenon. Such dependent phenomena are said
to be coupled. The dependency between phenomena may occur
in any geometric part, where both phenomena are defined. The
number of phenomena may be very high and the dependencies
between them is usually extremely complex. Hence, this kind
of problems tend to be very costly. In particular, identify the
dependency between coupled phenomena is not a trivial task.
At the same time, discovery these dependencies is essential
to develop efficient parallel simulators. The sequential version
of MPhyScas tool does not provide an automatic mechanism
to determine how different phenomena interact nor what data
they share or depend upon. Therefore, a programmer interested
in create a parallel version of a MPhyScas' simulator needs to
manually analyze the simulator to extract such information.

In this paper, we explore the modular layered architecture
of MPhyScas to automatically identify data dependencies be­
tween phenomena in multi-physics and multi-scale simulators.
The automation of this task may dramatically reduce the
costs to develop parallel simulators. Moreover, it contributes

978-1-4244-6588-0/10/$25.00 ©201 0 IEEE

to remove errors caused by imprecise representation of data
dependencies in the parallel simulator.

We adopted a formal approach, based on Coloured Petri
Nets (CPN) [2], to model the simulator structure. In MPhyScas,
the simulator is represented using a XML file format. We de­
veloped a compiler to transverse the XML representation of the
simulator and automatically translate it into the corresponding
CPN model. The generated model is then simulated using the
CPNTools [3] to extract the dependency graph, which is used
to assess the data dependency in the simulator structure.

As a final contribution of this work, we proposed a genetic
algorithm to calculate a schedule for parallel simulator in a
multiprocessor environment. To calculate the schedule, the
algorithm uses data dependence information obtained through
the CPN model and the configuration of multiprocessor en­
vironment, including communication costs and processors'
speed. A case study is conducted to evaluate the performance
of parallel simulators produced using our genetic algorithm.

This paper is organized as follows. Section II presents
some of the related works. Section III details the MPhyScaS
definition and its properties. The methodology used in the hole
work is presented in Sections IV. Section V and VI describe
a model definition based on CPN to represent MPhyScaS
data and how the model is analyzed in order to identify
dependencies. Section VII describes how the dependencies
information is used as input to a GA algorithm. Sections VIII
and IX show the experiments and results obtained, respectively.
And the conclusions of the proposed work are presented in
Section X.

II. RELATED WORK

In this section we discuss some meta-heuristic proposed to
deal with the scheduling problem.

Xu et a1. [4] used Simulated Annealing (SA) for fixed
job scheduling problem. Their objective was to minimize
assignment cost of the sequential network model. In [5],
Kang et a1.proposed a discrete variant of Particle Swarm
Optimization (PSO) to solve job scheduling problems which
all tasks are non-preemptive and independent of each other.
Thus, there is no communication cost to be worried about.
Chong et a1. [6] relied on nectar collection of honey bee
colonies to create an algorithm for solving scheduling problem.

923

They consider only the makespan function to compare its
algorithm. The algorithms cited above are of the improvement
type. They start out with a complete schedule, which may be
selected arbitrarily, and then try to obtain a better schedule by
manipulating the current schedule.

Among these methods, the Genetic Algorithm (GA) has
emerged as a tool that is beneficial for a variety of study fields.
Kim [7] proposed a permutation-based elitist genetic algorithm
that used serial schedule generation scheme for solving a
large-sized multiple resource-constrained project scheduling
problem. Kim consider the number of resources, but do not
consider waiting time and communication costs. Moattar et

a1. [8] proposed a GA based algorithm that finds schedules
where jobs are partitioned between processors in which total
finishing time and waiting time are minimized. As we did,
they used a fitness function based on aggregation to optimize
two criteria simultaneously, but they did not aggregate the
communication cost to their function. Yang et a1. [9] also
relies on GA for solving scheduling problem, but they have
a different optimization criteria: close the gap between the
specification of concurrent, communicating processes and the
heterogeneous processor target without compromising required
real-time performance and cost-effectiveness.

III. MPHySCAS

MPhyScaS (Multi-Physics and Multi-Scale Solver Environ­
ment) is an environment dedicated to the automatic devel­
opment of simulators based on the Finite Element Method
(FEM [10]). The term multi-physics is a qualifier to a set of
phenomena that interact in time and space. A multi-physics
system can also be called a system of coupled phenomena.
These phenomena are of different natures and behavior scale.

Usually, simulators based on FEM can be organized in
a layers architecture [11]. In the top layer global iterative
loops can be found, corresponding to overall scenery of the
simulation. The second layer contains what is called solution
algorithms which dictates the way linear systems are built and
solved. The third layer contains the solvers for linear systems
and all the machinery for operating with matrices and vectors.
The last layer is the phenomenon layer, which is responsible
for computing local matrices and vectors at the finite element
level and assembling them into global data structures.

The MPhyScaS architecture establishes a computational
representation for the computational layers using patterns
(Figure 1). Kernel level represents the global scenery level,
the level of the solution algorithms is represented by Block
level, the level of solvers is represented by Group level, and
the phenomena level is represented by Phenomenon level.

The original architecture of MPhyScaS provides support
to the automatic building of sequential simulators only. For
instance, it does not have abstractions that could automatically
define the distribution of data and procedures and their re­
lationships across a cluster of PC's. The MPhyScaS parallel
architecture (called MPhyScaS-P) satisfy a number of new
requirements, including the support of parallel execution of
the simulators in clusters of PC's.

924

Global iterative loops Kernel

Articulation of solvers Block

1------1 1------1
Solvers Group

Phenomena Phenomenon

Fig. l. Computational representation for the layers of the simulator.

The topology of the procedures in the workflow of
MPhyScaS-S is implemented in MPhyScaS-P in a hierarchical
form with the aid of a set of processes, which are responsible

for the procedures synchronization. There are three types of
leader processes (see Figure 2):

• Cluster Rank Process: It is responsible for the execution
of the Kernel and to synchronize the beginning and
the end of each one of its level's tasks, which requires
demands to the lower level process. In a simulation there
is only one ClusterRank process;

• Machine Rank Process: One process is chosen among
all processes running in an individual machine to be its
leader. It is responsible for the execution of procedures
in the Block level and to synchronize the beginning and
the end of each one of it's level's tasks, which requires
demands to lower level processes;

• Process Rank Process: It is responsible for the execution
of the procedures in the Group level. The ClusterRank
and all MachineRank processes are also ProcessRank
processes.

Process 000 executes
procedures in all layers
from Kernel downwards

Fig. 2. Layers with procedures executed by ClusterRank in MPhyScaS-P.

IV. METHODOLOGY

In this section, we describe the methodology used to
identify the dependencies between MPhyScaS processes. The
methodology defines an automatic process whose result is
given as input to our scheduling algorithm. Figure 3 illustrates
such a process.

The first step of the methodology automatically creates a
Petri net model to represent the data structure of a given
MPhyScaS application. In particular, we use a high level Petri
net called Coloured Petri Nets (CPN). This kind of Petri net
has strongly typed tokens. Thus, depending on its type, a token

data

schedule

Fig. 3. An overview of the proposed methodology.

might store a complex data type. We explore this feature during
the model simulation to store the identification of tasks being
executed as well as their timestamps. The model is simulated
through the CPNTools [3]. The simulation output exposes
the data dependencies between MPhyScaS' processes. This
information is given as input to the Genetic Algorithm (GA)
to generate the schedule. The complexity of the problem relies
on the data dependence because the size of some required data
might be very large, increasing communication costs. The GA
also takes into account the architecture where the application
will execute as well as the communication costs involved.

V. PETRI NET MODEL

The CPN model is automatically generated from the XML
file extracted from the MPhyScaS framework. Such a XML
file contains a complete description of a particular MPhyScaS
simulator. Examples of the information extracted from the
XML file to produce the CPN model are: the data produced
and consumed by each process, the size of each data processed
by the simulator, and the position of each process in the
MPhyScaS hierarchy. The MPhyScaS hierarchical structure
restricts the way each process can communicate with others.
Therefore, this information is implicitly used to generate the
CPN model for a particular MPhyScaS simulator.

In our CPN model, each object of MPhyScaS architecture
is represented by a place, and each request from an object
to another is represented by a transition. The transitions have
guards, so that only tokens with a particular value can enable
a transition to fire. During the model simulation tokens store
the identification of tasks being executed as well as their

timestamps.

The relationship between a layer i and the layer above it
(layer i + 1) is formally described in Definition 5.1.

Definition 5.1 (CPN model for processes communication):
In the CPN model created to represent the communication
between the layer i and the layer i + 1 (the layer above i),
Ti,i+l be a set of transitions modeling the communication
between the layers i and i + 1, Pi = O(Ti,i+l) be a
set of places representing the processes at level i and
PHI = I(Ti,Hd be a set of places representing the processes
at level i + 1, the following restrictions must hold:

I) #Pi = #Ti,HI

925

2) let Pia, Pib E Pi, Pia =f. Pib,
�ti,i+1 E Ti,HI I (Pia E -ti,HI) 1\ (Pib E -ti,HI)

3) let PHIa,PHlb E PHI, PHla =f. PHIb,
�ti,i+1 E Ti,HI I (PHla E ti,HI-) 1\ (PHlb E ti,HI-)

This definition describes how one layer communicate to the
above layer. For process communication, more than one object
of a layer can belong to the same object of the above layer.
MPhyScaS architecture has already defined that, in general,
this can only occur if each communication between an object
and the object of the layer above is represented separately. This
also makes easy to identify the entire path of a task execution.

In Figure 4, we use the Block level to illustrate the level i
and the Kernel one to the level i + 1. Figure 4(a) is an example
of a valid part of the Petri net based on Definition 5.1 which
is an example of valid relationships between three Blocks and
a Kernel. Similarly, Petri net presented in Figure 4(b) violates
rule 2 of Definition 5.1. Beside of Petri net in Figure 4(b) does
not represent a request from the Kernel (because in this Petri
net the Kernel asks to Blocks 2 and 3 using only one request
for executing something), the way represented in this Petri net
would not permit us to analyze each path that one request goes
through.

(a) (b)

Fig. 4. Graphical representation of a valid and an invalid part of Petri net
based on Definition 5.1.

MPhyScaS architecture defines only four layers. Some of
these layers are divided into sub-layers:

• The Block layer is divided into Block and Algorithm;
• The Group layer is divided into Group, QuantityTask, and

GroupTask;
• The Phenomenon layer is divided into Phenomenon and

Quantity.

Another restriction shows up when there is communication
between two layers and this communication occurs between
the first sub-layer of a layer i and the last sub-layer of i + 1.

In this case, more than one objects of the last sub-layer of

i + 1 can communicate to the same object of first sub-layer of
i. Following MPhyScaS architecture definition, this can only
occur if the objects of last sub-layer of i + 1 belongs to the
same object of first sub-layer of i + 1.

In Figure 5, we use Group level as the first sub-layer of i,
Algorithm level as the last sub-layer of i+ 1, and Block level as
the first sub-layer of i + 1. Figure 5(a) is an example of a valid
Petri net that follows the new restriction which is an example
of valid relationships between a Group and two Algorithms
that belongs to the same Block. Similarly, Petri net presented
in Figure 5(b) is an example of this new restriction violation. In

this last Petri net, two different Algorithms (Algorithms 1 and
2) belonging to different Blocks (Blocks 1 and 2 respectively)
ask for the execution of the same Group (Group 1).

(a) (b)

Fig. 5. Graphical representation of a valid and an invalid part of Petri net
considering the new restriction.

VI. MODEL ANALYSIS

To assist our modeling we use the tool CPNTools [3],

which is a mature and well tested tool that supports editing,
simulation, and analysis of CPN.

To illustrate the analysis done, Figure 6(a) shows a part of
a Petri net that represents the execution of two GroupTasks.
GroupTask 0 (GT 0) requires Phenomenon 0 (Ph 0) to execute
Quantity 0 (q 0) which assembles the Global State 0 (S 0). In
the same Petri net, GroupTask 1 (GT 1) requires Phenomenon
o (Ph 0) to execute Quantity 1 (q 1) which needs that Global
State 0 (S 0) is already assembled to be able to assemble the
Global State 1 (S 1).

In order to make it easier the model analysis, we invert the
direction of each arc in the Petri net as shown in Figure 6(b).
This helps us to identify the entire path which a requirement
of a task execution passed through. In this way, the analysis
begins in the execution of a task (State level) and goes through
the levels following a bottom-up direction until it reaches the
top level (Kernel level).

GT1 GT 1

q 1 q1

Sl S 1

(a) (b)

Fig. 6. An example of a Petri net that represents the execution of two
GroupTasks and the same Petri net with arcs direction inverted.

926

The first task to execute is represented by a token with
0.0.0.0 value. This token is in the place that represents the
Global State 0 (S 0) because this is the global state assembled
by the task 0.0.0.0 (see Figure 7(a)). This marking enables the
transition that makes token go to the place that represents the
Quantity O. This is the quantity that assembles Global State O.

When the token is in the place that represents the Quantity
o (q 0), as depicted in Figure 7(b), it enables the transition that
makes the token go to place that represents the Phenomenon O.
The same occurs when the token is in the place that represents
Phenomenon 0 (Ph 0). A transition is enable to fire, moving
the token to the place that represents GroupTask O.

GTO GT1

Ph 0

q 1

51 51

token = 0.0.0.0 token = 0.0.0.0

(a) (b)

Fig. 7. Petri net in the execution of the first task of the simulation.

The analysis continues until Kernel level is reached. When
this occurs, the token assumes the value of the next task of
the simulation. In the case of the example, the token assumes
1.1.0.1 value. It is placed in the Global State 1 which is the
next global state to be assembled in the simulation. Figure 8(a)
shows the token in the place that represents Global State 1 (S
1). In this case, the token enables the transition that makes the
token go to the place that represents Quantity 1.

When the transition is fired and the token is in the Quantity
1 place, the token enables two transitions to fire. The first
transition is the one which makes the token go to place that
represents Phenomenon O. The second transition is the one
which makes the token go to place that represents the Global
State O. Figure 8(b) depicts this situation.

The dependencies are identified when a toke enables two
transition. In this case, we verify all state space constructed
from this moment. The analysis search for objects that belong

to levels that execute something. These levels are Kernel,
Algorithm, QuantityTask, GroupTask, and Quantity levels. The
other levels only forward a requirement, executing nothing.
There is a dependence between the objects found of the same
level. The dependence occurs so that the object that came from
an already executed task must be executed before the other one.
In the example, the analysis finds two dependences: Quantity
1 depends on the Quantity 0; and GroupTask 1 depends on the
GroupTask 0 for executing.

The restriction of each transition is important because the
analysis do not identify dependences if an object depends on

GT1 GT1

Ph 0 Ph 0

token = 1.1.0.1 token = 1.1.0.1

(a) (b)

Fig. 8. Petri net in the execution of the second task of the simulation.

another one and this last one depends on another one. In other
words, the analysis do not identify dependence between the
first object and the third one.

The model analysis is summarized in Pseudo-Code 1. We
use the occurence graphs method (also called state spaces or
reachability graphs) to realize the analysis.

Pseudo-Code 1: Model analysis pseudo-code.

I foreach node of the state Space do
2 boolean dependence = Verify

Dependence(node) //Verify if there
are more than one tokens and if they
are at the same level

3 if dependence then
4 Write In File(node)
s end
6 end

Line 1 of Pseudo-Code 1 shows that each node of the state
space, i.e. each reachable system state will be analyzed. In line
2 it is verified if there is any dependence in the node. For this,
it is verified if there are more than one token in the net and if
the tokens are at the same level of MPhyScaS architecture. If a
dependence exists, the node indicating the places that contains
the tokens will be written in a file (lines 3 to 5).

VII. SCHEDULING PARALLEL JOBS

A. Genetic Algorithms

Genetic Algorithms are inspired by the mechanism of natu­
ral selection where stronger individuals are likely the winners
in a competing environment. Here, GA uses a direct analogy
of such natural evolution. Throughout a genetic evolution,
the fitter chromosome has a tendency to yield good quality
offspring which means a better solution to any problem [12].

In each cycle of genetic operation, a subsequent generation
is created from the chromosomes in the current population
(parents). The genes of the parents are mixed and recombined
for the production of offspring in the next generation. It
is expected that from this process of evolution, the better

927

chromosome will create a large number of offspring, and thus
has a higher chance of surviving in the subsequent generation,
emulating the survival-of-fittest mechanism in nature [13].

B. An Algorithm Based on GA for Scheduling Parallel Jobs

Analyzing the CPN model, we can automatically generate
a DAG structure, whose nodes are processes and edges rep­
resents the data dependences between processes. The DAG is
then provided as input for the proposed genetic algorithm to
find schedules for parallel MPhyScaS applications.

MPhyScaS' tasks are non-preemptive. Moreover, we know
in advance the worst-case execution time (WCT) of each

task as well as the communication costs involved. Eventually,
we assume a platform with fixed number of homogeneous
processors. Considering this scenario, we propose to apply
a genetic algorithm to generate an offline schedule for the
parallel execution of MPhyScaS simulations.

The GA individual is represented by a sequence of pro­
cesses for the execution. This sequence is divided into blocks
that have their size equals to the number of processors. In
our scheduling algorithm, the genetic operators affect only the
processes. They modify where the processes will be executed,
and at what execution time it will occur.

The genetic algorithm proposed herein applies a proposed
crossover operator to generate two new individuals into the
new generation. It is a two-level crossover consisting of getting
genes of the parents and swapping repeated information. The
mutation operator guarantees the modification in communica­
tion cost values without violating the precedence of processes.

Our scheduling algorithm wants to find a trade off between
the execution of processes and the time necessary for these
processes to communicate with each other. Besides that, we
want to minimize the idle time. In other words, our scheduling
algorithm aims to optimize three criteria together by aggrega­
tion. The fitness function used is

n

'Y = WI . Cmax + W2 . T + W3 . L WTj
j=1

where Cmax is the makespan function, T represents the total
time spent with communication, 2:.7=1 WTj is the sum of idle
times for all processors, and WI, W2, and W3 are weights for
giving importance to each function.

VIII. EXPERIMENTS SE T U P

The experiment explores two parallel architectures com­

posed of fixed number of homogeneous processors. The dif­
ference is the number of processors in each architecture: the
first one has 3 processors, and the second, has 6 processors.

We compare our algorithm against three scheduling al­
gorithms: List Scheduling [14], Longest Processing Time
(LPT) [15], and Shortest Processing Time (SPT) [16]. In list
scheduling algorithm we use the MPhyScaS architecture for
determining the priority of the processes. Processes in the same
level have the same priority.

We calculate the arithmetic mean and standard deviation of
each simulated scenario. From each of 24 scenarios (combining

three simulators, two parallel architecture, and four scheduling
algorithms), we collected data from 30 simulations. This
estimation was based on the number of samples required to
calculate the mean value for the fitness function assuming a
confidence interval of 95%. We used the data of ten simula­
tions, and we found that we need about nine samples.

We use a benchmark composed of three different
MPhyScaS' simulators, which are represented through DAGs
specifying the processes and their dependences.

For sequential simulation of the problems, the communi­
cation cost and the waiting time functions have their values
nulled, and the makespan function has its maximum value.
The results for sequential execution will also be presented.

In the experiments, we set the parameters to values:

• Makespan (Wi): 60%

• Communication cost (W2): 30%

• Waiting time (W3): 10%

These parameters are based on the characteristics of
MPhyScaS simulators. One might change them to assign a
distinct level of importance for each optimization criteria,
generating a different scheduling as result.

We evaluate the proposed GA algorithm using two pop­
ulation sizes: one with 50 indiviuals; and another with 100

individuals, using cross probability equals to 0.9 and the
mutation rate equals to 0.1.

IX. RESULTS

In this section, we will present the results for the three
different MPhyScaS simulators, which are represented through
DAGs specifying the processes and their dependences.

A. The First Simulator

The DAG that represents this simulator has 50 nodes
(processes) and 61 edges (dependences). These dependences
were found by analyzing the Petri net model that corresponds
to this DAG. A maximum of 8 levels of nesting is found in
dependences of this graph.

The value obtained using the fitness function for the sequen­
tial execution of the first problem is equal to 1446.6. Table I
shows the results to list scheduling, LPT and SPT for both
parallel architectures (composed by 3 processors and 6 pro­
cessors). The results found by the proposed genetic algorithm
for 500, 1000, and 2000 iterations are presented in Table II.
One can note that we also present in both tables the percentage
gain obtained based on the sequential execution. For the GA

algorithm the percentage gain presented is calculated to the
result obtained after 2000 iterations.

The improvement of the proposed algorithm is depicted in
Figure 9. Figure 9(a) shows the convergence for the architec­
ture with 3 processors, while the one for the architecture with
6 processors is shown in Figure 9(b).

B. The Second Simulator

The second DAG has 126 nodes (processes) and 223 edges
(dependences), which were found by the Petri net model. This
graph has 16 levels of nesting as its maximum.

928

TABLE I
RESULTS FOR LIST SCHEDULING, LPT AND SPT

3 processors
List Scheduling LPT SPT

Mean 969.9200 1045.5100 1017.1700
S.D. 36.7211 37.2302 40.0182

Gain (%) 32.9517 27.7264 29.6854
6 processors

List Scheduling LPT SPT
Mean 1066.7400 1104.3200 1132.8300
S.D. 114.8803 120.1449 122.5676

Gain (%) 26.2588 23.6610 21.6902

TABLE II
RESULTS FOR GA

Fitness
3 processors

Iterations 50 individuals 100 individuals

500 Mean 842.2633 833.4733
S.D. 31.0516 21.0644

1000 Mean 839.9333 829.4833
S.D. 29.8499 24.1853

2000 Mean 837.4533 828.8533
S.D. 29.3756 24.0546

Gain (%) 42.1088 42.7033
6 processors

Iterations 50 individuals 100 individuals

500 Mean 707.2600 697.2100
S.D. 37.0818 36.6040

1000 Mean 689.2900 686.1900
S.D. 38.0706 35.5946

2000 Mean 682.0100 680.0800
S.D. 36.3665 32.2251

Gain (%) 52.8543 52.9877

The value obtained using the fitness function for the sequen­
tial execution of the second problem is equal to 3510.0. The
list scheduling, LPT and SPT results are presented in Table III
for both parallel architecture considered. Table IV shows the
results obtained for the same scenarios using the proposed GA
algorithm.

TABLE III
RESULTS FOR LIST SCHEDULING, LPT AND SPT

3 processors
List Scheduling LPT SPT

Mean 2592.1100 2580.9700 2618.6800
S.D. 157.4361 154.3924 159.9462

Gain (%) 26.1507 26.4681 25.3937
6 processors

List Scheduling LPT SPT
Mean 2944.8700 2817.8200 2842.7300
S.D. 158.5764 155.0172 160.9108

Gain (%) 16.1006 19.7202 19.0105

The convergence during all iterations of the latest genetic
algorithm results presented can be seen in Figure 10.

e. The Third Simulator

The DAG that represents the third simulator has 150 nodes
(processes) and 237 edges (dependences). These dependences
were found by analyzing the Petri net model that corresponds
to this problem. A maximum of 12 levels of nesting is found
in dependences of this graph.

920 '"

900 'Ox

880

860

840

ox
oX

50 individuals x
100 individuals •

820��--��--��--��--���
o 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

(a)

900,--.--,--.--,--,--,--,--,--,--,

850

.x
800 x

• x x
• X

750 • x

50 individuals x
100 individuals •

•••
""xx".. .
.� 700

o 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

(b)

Fig. 9. The convergence of the proposed genetic algorithm for 50 and 100
individuals: (a) using first architecture; (b) using second architecture.

Iterations

500 Mean
S.D.

1000 Mean
S.D.

2000 Mean
S.D.

Gain (%)

Iterations

500 Mean
S.D.

1000 Mean
S.D.

2000 Mean
S.D.

Gain (%)

TABLE IV
RESULTS FOR GA

I Fitness
3 processors
50 individuals 100 individuals

2447.6730 2445.8930
62.3827 61.3071

2399.9230 2401.9930
59.5612 74.9665

2379.2830 2385.7330
63.3114 70.7054
32.2141 32.0304

6 processors
50 individuals 100 individuals

2254.2800 2242.7870
74.0134 62.4255

2149.6600 2140.3770
66.9043 65.4855

2077.6200 2068.6470
67.2494 59.3870
40.8085 41.0642

The value obtained using the fitness function for sequential
execution of the third problem is equal to 5680.8. The results
to list scheduling, LPT and SPT are presented in Table V
considering both parallel architecture. Table VI shows the
results also for both architectures considered found by the
proposed genetic algorithm for 500, 1000 and 2000 iterations.

Figure 11 depicts the convergence for the presented results.
The convergence related to the architecture with 3 processors is

929

2850

2800

2750

2700

2650

2600

2550

2500

2450

2400

¥

. .

50 individuals x
100 individuals •

2350 '------'----'------'----'------'----'------'----'------'-------'
o 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

(a)

2700 _-.--,--.--,--.--,--.--,--.---,

x
2600

.�

2500
•
• �

¥
2400 •

2300

2200

2100

50 individuals x
100 individuals _

2000 '------'----'------'----'------'----'------'----'------'-------'
o 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

(b)

Fig. 10. The convergence of the proposed genetic algorithm for 50 and 100
individuals: (a) using first architecture; (b) using second architecture.

TABLE V
RESULTS FOR LIST SCHEDULING, LPT AND SPT

3 processors
List Scheduling LPT SPT

Mean 5464.2300 5356.8000 5495.4900
S.D. 256.9011 255.3976 257.7374

Gain (%) 3.8123 5.7034 3.2620
6 processors

List Scheduling LPT SPT
Mean 6727.8600 6727.8000 6982.8900
S.D. 259.8337 258.9764 260.4492

Gain (%) -18.4315 -18.4305 -22.9209

depicted in Figure II(a) and the one related to the architecture
with 6 processors, in Figure 11 (b).

Looking at the results for the second architecture, one
can note that only GA algorithm gets some improvement.
The other algorithms do not get improvement because of the
communication cost and waiting time which spent more time
than the saved one.

X. CONCLUSIONS

This work explored an important factor related to the par­
allelization of simulators based on the Finite Element Method
(FEM [10]), i.e. multi-physics simulators. In this kind of sim­
ulators, there is a large set of relations between objects within
the architecture. Distinguishing what could be a dependence
or a simple relation is an arduous and high complex task. In

Iterations

500 Mean
S.D.

1000 Mean
S.D.

2000 Mean
S.D.

Gain (%)

Iterations

500 Mean
S.D.

1000 Mean
S.D.

2000 Mean
S.D.

Gain (%)

TABLE VI
RESULTS FOR GA

I Fitness
3 processors
50 individuals 100 individuals

4925.2800 4838.9400
101.4804 111.0909

4877.0000 4796.0000
96.3841 117.8795

4852.7400 4772.9200
102.7384 111.5300
14.5765 15.9816

6 processors
50 individuals 100 individuals

5350.2400 5294.6800
147.6926 107.5116

5269.4200 5221.0000
148.4255 107.9098

5232.9200 5181.1800
154.3999 106.3545

7.8841 8.7949

5250 :r---r-.----.-,-----;,---r-,----r-.-----,
50 individuals

5200 100 individuals

5150 x
5100 • Xx
5050 •

5000

4 950

4900

4850

4800

I _--'-_.l.----L.--=::::::::::���d 4750 L
o 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

(a)

5800 ,---r-,----,-,-----,-,---,---,-.-----,

5700 x

5600

5500

5400

5300

5200

50 individuals
100 individuals

5 100 L---'-_.l.----L._-L-----'_---'--_L---'-_.l.----'
o 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

(b)

Fig. II. The convergence of the proposed genetic algorithm for 50 and 100
individuals: (a) using first architecture; (b) using second architecture.

this paper, we propose a model based on Coloured Petri Nets
which makes the task of classifying dependencies automated.

It was also shown in the experiments that the model is
capable in identifying all existing dependencies in the simula­
tors associated to each presented scenario. So that, it cancels
the possibility of classification error. Hence, the proposed
model achieved success in its main proposal, i.e. to identify
all dependencies between processes.

We also proposed a scheduling algorithm, based on genetic
algorithms, to explore the dependencies in order to define
a schedule near the optimal one. This process can be very
complex when considering other effects: the architecture where
the simulations will run; the communication cost between
jobs; and the waiting time of each processor. We evaluate
our approach against three well known algorithms and three
different multi-physics simulators. The results demonstrated
that our approach was able to find excellent schedule for the
parallel multi-physics simulators in the benchmark.

930

As a future work, we will adapt the algorithm to consider
parallel platforms with heterogeneous processors. We will also
compare our approach to other meta-heuristics.

REFERENCES

[I] F. C. G. Santos, 1. M. A. Barbosa, 1. M. Bezerra, and E. R. R. J. Brito,
"An architecture for the automatic development of high performance
multi-physics simulators," Fourth International Conference on Advanced
Computational Methods in Engineering (ACOMEN 2008), 2008.

[2] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use (Monographs in Theoretical Computer Science a Series
of Eatcs). 2, 1997.

[3] CPNGroup, "Cpntools: Computer tool for coloured petri nets," 2009, urI:
http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[4] 1. Xu, H. Sun, and W. Yang, "Heuristic algorithm for fixed job scheduling
problem," in ICNC '07: Proceedings of the Third International Confer­
ence on Natural Computation (ICNC 2007). Washington, DC, USA:
IEEE Computer Society, 2007, pp. 698-701.

[5] Q. Kang, H. He, H. Wang, and C. Jiang, "A novel discrete particle
swarm optimization algorithm for job scheduling in grids," in ICNC '08:
Proceedings of the 2008 Fourth International Conference on Natural
Computation. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 401-405.

[6] C. S. Chong, A. I. Sivakumar, M. Y. H. Low, and K. L. Gay, "A bee
colony optimization algorithm to job shop scheduling," in WSC '06:
Proceedings of the 38th conference on Winter simulation. Winter
Simulation Conference, 2006, pp. 1954-1961.

[7] 1.-L. Kim, "Permutation-based elitist genetic algorithm using serial
scheme for large-sized resource-constrained project scheduling," in WSC
'07: Proceedings of the 39th conference on Winter simulation. Piscat­
away, NJ, USA: IEEE Press, 2007, pp. 2112-2118.

[8] E. Moattar, A. Rahmani, and M. Derakhshi, "Job scheduling in multi
processor architecture using genetic algorithm," Innovations in Informa­
tion Technology, 2007. Innovations '07. 4th International Conference on,
pp. 248-251, Nov. 2007.

[9] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins, "Energy-aware runtime scheduling for embedded­
multiprocessor socs," IEEE Des. Test, vol. 18, no. 5, pp. 46-58, 2001.

[10] D. L. Logan, A First Course in the Finite Element Method, 3rd ed.
Pacific Grove, CA, USA: Brooks/Cole Publishing Co., 2002.

[11] F. C. G. Santos, E. R. R. 1. Brito, and 1. M. A. Barbosa, "Dealing with
coupled phenomena in the finite element method," XXVII Latin American
Congress on Computational Methods in Engineering, 2006.

[12] W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Programming
- An Introduction. San Francisco, CA: Morgan Kaufinann, 1998.

[13] K. F. Man, K. S. Tang, and S. Kwong, Genetic Algorithms: Concepts
and Designs with Disk. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 1999.

[14] B. Simion, C. Leordeanu, F. Pop, and V. Cristea, "A hybrid algorithm
for scheduling workflow applications in grid environments (icpdp)," in
OTM Conferences (2), 2007, pp. 1331-1348.

[15] K. Altendorfer, B. Kabelka, and W. Stocher, "A new dispatching rule
for optimizing machine utilization at a semiconductor test field," Ad­
vanced Semiconductor Manufacturing Conference, 2007. ASMC 2007.
IEEEISEMI, pp. 188-193, June 2007.

[16] 1. Leung, L. Kelly, and 1. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. Boca Raton, FL, USA:
CRC Press, Inc., 2004.

