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Abstract-Real problem simulations involving physic phenom­
ena can demand too much execution time. To improve the 
performance of these simulations it is necessary to have an 
approach to parallelize the processes that compose the simulation. 
MPhyScaS (Multi-Physics and Multi-Scale Solver Environment) 
is an environment dedicated to the automatic development of 
simulators. Each MPhyScaS simulation demands a great amount 
of time. To parallelize MPhyScaS simulations, the approach used 
should define a hierarchical parallel structure. The aim of the 
work herein presented is to identify parallel jobs and dependent 
ones. The presented model is based on Coloured Petri Nets (CPN). 
This information will be input to a scheduling algorithm. 

Index Terms-Parallel jobs, dependencies, Coloured Petri Nets, 
scheduling. 

I. INT RODUCTION 

MPhyScas (Multi-Physics Multi-Scale Solver Environment) 
is a computational system dedicated to the automatic develop­
ment of simulators based on the finite element method [1]. 
These simulators models the behavior of a set of interacting 
phenomena in space and time. These phenomena are usually of 
different nature (deformation of solids, heat transfer, etc.) and 
may be defined in different scales of behavior (macro and mi­
cro mechanical behavior of materials). During the simulation, 
part of one phenomenons data may depends on information 
from other phenomenon. Such dependent phenomena are said 
to be coupled. The dependency between phenomena may occur 
in any geometric part, where both phenomena are defined. The 
number of phenomena may be very high and the dependencies 
between them is usually extremely complex. Hence, this kind 
of problems tend to be very costly. In particular, identify the 
dependency between coupled phenomena is not a trivial task. 
At the same time, discovery these dependencies is essential 
to develop efficient parallel simulators. The sequential version 
of MPhyScas tool does not provide an automatic mechanism 
to determine how different phenomena interact nor what data 
they share or depend upon. Therefore, a programmer interested 
in create a parallel version of a MPhyScas' simulator needs to 
manually analyze the simulator to extract such information. 

In this paper, we explore the modular layered architecture 
of MPhyScas to automatically identify data dependencies be­
tween phenomena in multi-physics and multi-scale simulators. 
The automation of this task may dramatically reduce the 
costs to develop parallel simulators. Moreover, it contributes 
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to remove errors caused by imprecise representation of data 
dependencies in the parallel simulator. 

We adopted a formal approach, based on Coloured Petri 
Nets (CPN) [2], to model the simulator structure. In MPhyScas, 
the simulator is represented using a XML file format. We de­
veloped a compiler to transverse the XML representation of the 
simulator and automatically translate it into the corresponding 
CPN model. The generated model is then simulated using the 
CPNTools [3] to extract the dependency graph, which is used 
to assess the data dependency in the simulator structure. 

As a final contribution of this work, we proposed a genetic 
algorithm to calculate a schedule for parallel simulator in a 
multiprocessor environment. To calculate the schedule, the 
algorithm uses data dependence information obtained through 
the CPN model and the configuration of multiprocessor en­
vironment, including communication costs and processors' 
speed. A case study is conducted to evaluate the performance 
of parallel simulators produced using our genetic algorithm. 

This paper is organized as follows. Section II presents 
some of the related works. Section III details the MPhyScaS 
definition and its properties. The methodology used in the hole 
work is presented in Sections IV. Section V and VI describe 
a model definition based on CPN to represent MPhyScaS 
data and how the model is analyzed in order to identify 
dependencies. Section VII describes how the dependencies 
information is used as input to a GA algorithm. Sections VIII 
and IX show the experiments and results obtained, respectively. 
And the conclusions of the proposed work are presented in 
Section X. 

II. RELATED WORK 

In this section we discuss some meta-heuristic proposed to 
deal with the scheduling problem. 

Xu et a1. [4] used Simulated Annealing (SA) for fixed 
job scheduling problem. Their objective was to minimize 
assignment cost of the sequential network model. In [5], 
Kang et a1.proposed a discrete variant of Particle Swarm 
Optimization (PSO) to solve job scheduling problems which 
all tasks are non-preemptive and independent of each other. 
Thus, there is no communication cost to be worried about. 
Chong et a1. [6] relied on nectar collection of honey bee 
colonies to create an algorithm for solving scheduling problem. 
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They consider only the makespan function to compare its 
algorithm. The algorithms cited above are of the improvement 
type. They start out with a complete schedule, which may be 
selected arbitrarily, and then try to obtain a better schedule by 
manipulating the current schedule. 

Among these methods, the Genetic Algorithm (GA) has 
emerged as a tool that is beneficial for a variety of study fields. 
Kim [7] proposed a permutation-based elitist genetic algorithm 
that used serial schedule generation scheme for solving a 
large-sized multiple resource-constrained project scheduling 
problem. Kim consider the number of resources, but do not 
consider waiting time and communication costs. Moattar et 

a1. [8] proposed a GA based algorithm that finds schedules 
where jobs are partitioned between processors in which total 
finishing time and waiting time are minimized. As we did, 
they used a fitness function based on aggregation to optimize 
two criteria simultaneously, but they did not aggregate the 
communication cost to their function. Yang et a1. [9] also 
relies on GA for solving scheduling problem, but they have 
a different optimization criteria: close the gap between the 
specification of concurrent, communicating processes and the 
heterogeneous processor target without compromising required 
real-time performance and cost-effectiveness. 

III. MPHySCAS 

MPhyScaS (Multi-Physics and Multi-Scale Solver Environ­
ment) is an environment dedicated to the automatic devel­
opment of simulators based on the Finite Element Method 
(FEM [10]). The term multi-physics is a qualifier to a set of 
phenomena that interact in time and space. A multi-physics 
system can also be called a system of coupled phenomena. 
These phenomena are of different natures and behavior scale. 

Usually, simulators based on FEM can be organized in 
a layers architecture [11]. In the top layer global iterative 
loops can be found, corresponding to overall scenery of the 
simulation. The second layer contains what is called solution 
algorithms which dictates the way linear systems are built and 
solved. The third layer contains the solvers for linear systems 
and all the machinery for operating with matrices and vectors. 
The last layer is the phenomenon layer, which is responsible 
for computing local matrices and vectors at the finite element 
level and assembling them into global data structures. 

The MPhyScaS architecture establishes a computational 
representation for the computational layers using patterns 
(Figure 1). Kernel level represents the global scenery level, 
the level of the solution algorithms is represented by Block 
level, the level of solvers is represented by Group level, and 
the phenomena level is represented by Phenomenon level. 

The original architecture of MPhyScaS provides support 
to the automatic building of sequential simulators only. For 
instance, it does not have abstractions that could automatically 
define the distribution of data and procedures and their re­
lationships across a cluster of PC's. The MPhyScaS parallel 
architecture (called MPhyScaS-P) satisfy a number of new 
requirements, including the support of parallel execution of 
the simulators in clusters of PC's. 
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Global iterative loops Kernel 

Articulation of solvers Block 

1------1 .... 1------1 
Solvers Group 

Phenomena Phenomenon 

Fig. l. Computational representation for the layers of the simulator. 

The topology of the procedures in the workflow of 
MPhyScaS-S is implemented in MPhyScaS-P in a hierarchical 
form with the aid of a set of processes, which are responsible 

for the procedures synchronization. There are three types of 
leader processes (see Figure 2): 

• Cluster Rank Process: It is responsible for the execution 
of the Kernel and to synchronize the beginning and 
the end of each one of its level's tasks, which requires 
demands to the lower level process. In a simulation there 
is only one ClusterRank process; 

• Machine Rank Process: One process is chosen among 
all processes running in an individual machine to be its 
leader. It is responsible for the execution of procedures 
in the Block level and to synchronize the beginning and 
the end of each one of it's level's tasks, which requires 
demands to lower level processes; 

• Process Rank Process: It is responsible for the execution 
of the procedures in the Group level. The ClusterRank 
and all MachineRank processes are also ProcessRank 
processes. 

Process 000 executes 
procedures in all layers 
from Kernel downwards 

Fig. 2. Layers with procedures executed by ClusterRank in MPhyScaS-P. 

IV. METHODOLOGY 

In this section, we describe the methodology used to 
identify the dependencies between MPhyScaS processes. The 
methodology defines an automatic process whose result is 
given as input to our scheduling algorithm. Figure 3 illustrates 
such a process. 

The first step of the methodology automatically creates a 
Petri net model to represent the data structure of a given 
MPhyScaS application. In particular, we use a high level Petri 
net called Coloured Petri Nets (CPN). This kind of Petri net 
has strongly typed tokens. Thus, depending on its type, a token 



data 

schedule 

Fig. 3. An overview of the proposed methodology. 

might store a complex data type. We explore this feature during 
the model simulation to store the identification of tasks being 
executed as well as their timestamps. The model is simulated 
through the CPNTools [3]. The simulation output exposes 
the data dependencies between MPhyScaS' processes. This 
information is given as input to the Genetic Algorithm (GA) 
to generate the schedule. The complexity of the problem relies 
on the data dependence because the size of some required data 
might be very large, increasing communication costs. The GA 
also takes into account the architecture where the application 
will execute as well as the communication costs involved. 

V. PETRI NET MODEL 

The CPN model is automatically generated from the XML 
file extracted from the MPhyScaS framework. Such a XML 
file contains a complete description of a particular MPhyScaS 
simulator. Examples of the information extracted from the 
XML file to produce the CPN model are: the data produced 
and consumed by each process, the size of each data processed 
by the simulator, and the position of each process in the 
MPhyScaS hierarchy. The MPhyScaS hierarchical structure 
restricts the way each process can communicate with others. 
Therefore, this information is implicitly used to generate the 
CPN model for a particular MPhyScaS simulator. 

In our CPN model, each object of MPhyScaS architecture 
is represented by a place, and each request from an object 
to another is represented by a transition. The transitions have 
guards, so that only tokens with a particular value can enable 
a transition to fire. During the model simulation tokens store 
the identification of tasks being executed as well as their 

timestamps. 

The relationship between a layer i and the layer above it 
(layer i + 1) is formally described in Definition 5.1. 

Definition 5.1 (CPN model for processes communication): 
In the CPN model created to represent the communication 
between the layer i and the layer i + 1 (the layer above i), 
Ti,i+l be a set of transitions modeling the communication 
between the layers i and i + 1, Pi = O(Ti,i+l) be a 
set of places representing the processes at level i and 
PHI = I(Ti,Hd be a set of places representing the processes 
at level i + 1, the following restrictions must hold: 

I) #Pi = #Ti,HI 
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2) let Pia, Pib E Pi, Pia =f. Pib, 
�ti,i+1 E Ti,HI I (Pia E -ti,HI) 1\ (Pib E -ti,HI) 

3) let PHIa,PHlb E PHI, PHla =f. PHIb, 
�ti,i+1 E Ti,HI I (PHla E ti,HI-) 1\ (PHlb E ti,HI-) 

This definition describes how one layer communicate to the 
above layer. For process communication, more than one object 
of a layer can belong to the same object of the above layer. 
MPhyScaS architecture has already defined that, in general, 
this can only occur if each communication between an object 
and the object of the layer above is represented separately. This 
also makes easy to identify the entire path of a task execution. 

In Figure 4, we use the Block level to illustrate the level i 
and the Kernel one to the level i + 1. Figure 4(a) is an example 
of a valid part of the Petri net based on Definition 5.1 which 
is an example of valid relationships between three Blocks and 
a Kernel. Similarly, Petri net presented in Figure 4(b) violates 
rule 2 of Definition 5.1. Beside of Petri net in Figure 4(b) does 
not represent a request from the Kernel (because in this Petri 
net the Kernel asks to Blocks 2 and 3 using only one request 
for executing something), the way represented in this Petri net 
would not permit us to analyze each path that one request goes 
through. 

(a) (b) 

Fig. 4. Graphical representation of a valid and an invalid part of Petri net 
based on Definition 5.1. 

MPhyScaS architecture defines only four layers. Some of 
these layers are divided into sub-layers: 

• The Block layer is divided into Block and Algorithm; 
• The Group layer is divided into Group, QuantityTask, and 

GroupTask; 
• The Phenomenon layer is divided into Phenomenon and 

Quantity. 

Another restriction shows up when there is communication 
between two layers and this communication occurs between 
the first sub-layer of a layer i and the last sub-layer of i + 1. 

In this case, more than one objects of the last sub-layer of 

i + 1 can communicate to the same object of first sub-layer of 
i. Following MPhyScaS architecture definition, this can only 
occur if the objects of last sub-layer of i + 1 belongs to the 
same object of first sub-layer of i + 1. 

In Figure 5, we use Group level as the first sub-layer of i, 
Algorithm level as the last sub-layer of i+ 1, and Block level as 
the first sub-layer of i + 1. Figure 5(a) is an example of a valid 
Petri net that follows the new restriction which is an example 
of valid relationships between a Group and two Algorithms 
that belongs to the same Block. Similarly, Petri net presented 
in Figure 5(b) is an example of this new restriction violation. In 



this last Petri net, two different Algorithms (Algorithms 1 and 
2) belonging to different Blocks (Blocks 1 and 2 respectively) 
ask for the execution of the same Group (Group 1). 

(a) (b) 

Fig. 5. Graphical representation of a valid and an invalid part of Petri net 
considering the new restriction. 

VI. MODEL ANALYSIS 

To assist our modeling we use the tool CPNTools [3], 

which is a mature and well tested tool that supports editing, 
simulation, and analysis of CPN. 

To illustrate the analysis done, Figure 6(a) shows a part of 
a Petri net that represents the execution of two GroupTasks. 
GroupTask 0 (GT 0) requires Phenomenon 0 (Ph 0) to execute 
Quantity 0 (q 0) which assembles the Global State 0 (S 0). In 
the same Petri net, GroupTask 1 (GT 1) requires Phenomenon 
o (Ph 0) to execute Quantity 1 (q 1) which needs that Global 
State 0 (S 0) is already assembled to be able to assemble the 
Global State 1 (S 1). 

In order to make it easier the model analysis, we invert the 
direction of each arc in the Petri net as shown in Figure 6(b). 
This helps us to identify the entire path which a requirement 
of a task execution passed through. In this way, the analysis 
begins in the execution of a task (State level) and goes through 
the levels following a bottom-up direction until it reaches the 
top level (Kernel level). 

GT1 GT 1 

q 1 q1 

Sl S 1 

(a) (b) 

Fig. 6. An example of a Petri net that represents the execution of two 
GroupTasks and the same Petri net with arcs direction inverted. 
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The first task to execute is represented by a token with 
0.0.0.0 value. This token is in the place that represents the 
Global State 0 (S 0) because this is the global state assembled 
by the task 0.0.0.0 (see Figure 7(a)). This marking enables the 
transition that makes token go to the place that represents the 
Quantity O. This is the quantity that assembles Global State O. 

When the token is in the place that represents the Quantity 
o (q 0), as depicted in Figure 7(b), it enables the transition that 
makes the token go to place that represents the Phenomenon O. 
The same occurs when the token is in the place that represents 
Phenomenon 0 (Ph 0). A transition is enable to fire, moving 
the token to the place that represents GroupTask O. 

GTO GT1 

Ph 0 

q 1 

51 51 

token = 0.0.0.0 token = 0.0.0.0 

(a) (b) 

Fig. 7. Petri net in the execution of the first task of the simulation. 

The analysis continues until Kernel level is reached. When 
this occurs, the token assumes the value of the next task of 
the simulation. In the case of the example, the token assumes 
1.1.0.1 value. It is placed in the Global State 1 which is the 
next global state to be assembled in the simulation. Figure 8(a) 
shows the token in the place that represents Global State 1 (S 
1). In this case, the token enables the transition that makes the 
token go to the place that represents Quantity 1. 

When the transition is fired and the token is in the Quantity 
1 place, the token enables two transitions to fire. The first 
transition is the one which makes the token go to place that 
represents Phenomenon O. The second transition is the one 
which makes the token go to place that represents the Global 
State O. Figure 8(b) depicts this situation. 

The dependencies are identified when a toke enables two 
transition. In this case, we verify all state space constructed 
from this moment. The analysis search for objects that belong 

to levels that execute something. These levels are Kernel, 
Algorithm, QuantityTask, GroupTask, and Quantity levels. The 
other levels only forward a requirement, executing nothing. 
There is a dependence between the objects found of the same 
level. The dependence occurs so that the object that came from 
an already executed task must be executed before the other one. 
In the example, the analysis finds two dependences: Quantity 
1 depends on the Quantity 0; and GroupTask 1 depends on the 
GroupTask 0 for executing. 

The restriction of each transition is important because the 
analysis do not identify dependences if an object depends on 



GT1 GT1 

Ph 0 Ph 0 

token = 1.1.0.1 token = 1.1.0.1 

(a) (b) 

Fig. 8. Petri net in the execution of the second task of the simulation. 

another one and this last one depends on another one. In other 
words, the analysis do not identify dependence between the 
first object and the third one. 

The model analysis is summarized in Pseudo-Code 1. We 
use the occurence graphs method (also called state spaces or 
reachability graphs) to realize the analysis. 

Pseudo-Code 1: Model analysis pseudo-code. 

I foreach node of the state Space do 
2 boolean dependence = Verify 

Dependence(node) //Verify if there 
are more than one tokens and if they 
are at the same level 

3 if dependence then 
4 Write In File(node) 
s end 
6 end 

Line 1 of Pseudo-Code 1 shows that each node of the state 
space, i.e. each reachable system state will be analyzed. In line 
2 it is verified if there is any dependence in the node. For this, 
it is verified if there are more than one token in the net and if 
the tokens are at the same level of MPhyScaS architecture. If a 
dependence exists, the node indicating the places that contains 
the tokens will be written in a file (lines 3 to 5). 

VII. SCHEDULING PARALLEL JOBS 

A. Genetic Algorithms 

Genetic Algorithms are inspired by the mechanism of natu­
ral selection where stronger individuals are likely the winners 
in a competing environment. Here, GA uses a direct analogy 
of such natural evolution. Throughout a genetic evolution, 
the fitter chromosome has a tendency to yield good quality 
offspring which means a better solution to any problem [12]. 

In each cycle of genetic operation, a subsequent generation 
is created from the chromosomes in the current population 
(parents). The genes of the parents are mixed and recombined 
for the production of offspring in the next generation. It 
is expected that from this process of evolution, the better 
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chromosome will create a large number of offspring, and thus 
has a higher chance of surviving in the subsequent generation, 
emulating the survival-of-fittest mechanism in nature [13]. 

B. An Algorithm Based on GA for Scheduling Parallel Jobs 

Analyzing the CPN model, we can automatically generate 
a DAG structure, whose nodes are processes and edges rep­
resents the data dependences between processes. The DAG is 
then provided as input for the proposed genetic algorithm to 
find schedules for parallel MPhyScaS applications. 

MPhyScaS' tasks are non-preemptive. Moreover, we know 
in advance the worst-case execution time (WCT) of each 

task as well as the communication costs involved. Eventually, 
we assume a platform with fixed number of homogeneous 
processors. Considering this scenario, we propose to apply 
a genetic algorithm to generate an offline schedule for the 
parallel execution of MPhyScaS simulations. 

The GA individual is represented by a sequence of pro­
cesses for the execution. This sequence is divided into blocks 
that have their size equals to the number of processors. In 
our scheduling algorithm, the genetic operators affect only the 
processes. They modify where the processes will be executed, 
and at what execution time it will occur. 

The genetic algorithm proposed herein applies a proposed 
crossover operator to generate two new individuals into the 
new generation. It is a two-level crossover consisting of getting 
genes of the parents and swapping repeated information. The 
mutation operator guarantees the modification in communica­
tion cost values without violating the precedence of processes. 

Our scheduling algorithm wants to find a trade off between 
the execution of processes and the time necessary for these 
processes to communicate with each other. Besides that, we 
want to minimize the idle time. In other words, our scheduling 
algorithm aims to optimize three criteria together by aggrega­
tion. The fitness function used is 

n 

'Y = WI . Cmax + W2 . T + W3 . L WTj 
j=1 

where Cmax is the makespan function, T represents the total 
time spent with communication, 2:.7=1 WTj is the sum of idle 
times for all processors, and WI, W2, and W3 are weights for 
giving importance to each function. 

VIII. EXPERIMENTS SE T U P  

The experiment explores two parallel architectures com­

posed of fixed number of homogeneous processors. The dif­
ference is the number of processors in each architecture: the 
first one has 3 processors, and the second, has 6 processors. 

We compare our algorithm against three scheduling al­
gorithms: List Scheduling [14], Longest Processing Time 
(LPT) [15], and Shortest Processing Time (SPT) [16]. In list 
scheduling algorithm we use the MPhyScaS architecture for 
determining the priority of the processes. Processes in the same 
level have the same priority. 

We calculate the arithmetic mean and standard deviation of 
each simulated scenario. From each of 24 scenarios (combining 



three simulators, two parallel architecture, and four scheduling 
algorithms), we collected data from 30 simulations. This 
estimation was based on the number of samples required to 
calculate the mean value for the fitness function assuming a 
confidence interval of 95%. We used the data of ten simula­
tions, and we found that we need about nine samples. 

We use a benchmark composed of three different 
MPhyScaS' simulators, which are represented through DAGs 
specifying the processes and their dependences. 

For sequential simulation of the problems, the communi­
cation cost and the waiting time functions have their values 
nulled, and the makespan function has its maximum value. 
The results for sequential execution will also be presented. 

In the experiments, we set the parameters to values: 

• Makespan (Wi): 60% 

• Communication cost (W2): 30% 

• Waiting time (W3): 10% 

These parameters are based on the characteristics of 
MPhyScaS simulators. One might change them to assign a 
distinct level of importance for each optimization criteria, 
generating a different scheduling as result. 

We evaluate the proposed GA algorithm using two pop­
ulation sizes: one with 50 indiviuals; and another with 100 

individuals, using cross probability equals to 0.9 and the 
mutation rate equals to 0.1. 

IX. RESULTS 

In this section, we will present the results for the three 
different MPhyScaS simulators, which are represented through 
DAGs specifying the processes and their dependences. 

A. The First Simulator 

The DAG that represents this simulator has 50 nodes 
(processes) and 61 edges (dependences). These dependences 
were found by analyzing the Petri net model that corresponds 
to this DAG. A maximum of 8 levels of nesting is found in 
dependences of this graph. 

The value obtained using the fitness function for the sequen­
tial execution of the first problem is equal to 1446.6. Table I 
shows the results to list scheduling, LPT and SPT for both 
parallel architectures (composed by 3 processors and 6 pro­
cessors). The results found by the proposed genetic algorithm 
for 500, 1000, and 2000 iterations are presented in Table II. 
One can note that we also present in both tables the percentage 
gain obtained based on the sequential execution. For the GA 

algorithm the percentage gain presented is calculated to the 
result obtained after 2000 iterations. 

The improvement of the proposed algorithm is depicted in 
Figure 9. Figure 9(a) shows the convergence for the architec­
ture with 3 processors, while the one for the architecture with 
6 processors is shown in Figure 9(b). 

B. The Second Simulator 

The second DAG has 126 nodes (processes) and 223 edges 
(dependences), which were found by the Petri net model. This 
graph has 16 levels of nesting as its maximum. 
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TABLE I 
RESULTS FOR LIST SCHEDULING, LPT AND SPT 

3 processors 
List Scheduling LPT SPT 

Mean 969.9200 1045.5100 1017.1700 
S.D. 36.7211 37.2302 40.0182 

Gain (%) 32.9517 27.7264 29.6854 
6 processors 

List Scheduling LPT SPT 
Mean 1066.7400 1104.3200 1132.8300 
S.D. 114.8803 120.1449 122.5676 

Gain (%) 26.2588 23.6610 21.6902 

TABLE II 
RESULTS FOR GA 

Fitness 
3 processors 

Iterations 50 individuals 100 individuals 

500 Mean 842.2633 833.4733 
S.D. 31.0516 21.0644 

1000 Mean 839.9333 829.4833 
S.D. 29.8499 24.1853 

2000 Mean 837.4533 828.8533 
S.D. 29.3756 24.0546 

Gain (%) 42.1088 42.7033 
6 processors 

Iterations 50 individuals 100 individuals 

500 Mean 707.2600 697.2100 
S.D. 37.0818 36.6040 

1000 Mean 689.2900 686.1900 
S.D. 38.0706 35.5946 

2000 Mean 682.0100 680.0800 
S.D. 36.3665 32.2251 

Gain (%) 52.8543 52.9877 

The value obtained using the fitness function for the sequen­
tial execution of the second problem is equal to 3510.0. The 
list scheduling, LPT and SPT results are presented in Table III 
for both parallel architecture considered. Table IV shows the 
results obtained for the same scenarios using the proposed GA 
algorithm. 

TABLE III 
RESULTS FOR LIST SCHEDULING, LPT AND SPT 

3 processors 
List Scheduling LPT SPT 

Mean 2592.1100 2580.9700 2618.6800 
S.D. 157.4361 154.3924 159.9462 

Gain (%) 26.1507 26.4681 25.3937 
6 processors 

List Scheduling LPT SPT 
Mean 2944.8700 2817.8200 2842.7300 
S.D. 158.5764 155.0172 160.9108 

Gain (%) 16.1006 19.7202 19.0105 

The convergence during all iterations of the latest genetic 
algorithm results presented can be seen in Figure 10. 

e. The Third Simulator 

The DAG that represents the third simulator has 150 nodes 
(processes) and 237 edges (dependences). These dependences 
were found by analyzing the Petri net model that corresponds 
to this problem. A maximum of 12 levels of nesting is found 
in dependences of this graph. 
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Fig. 9. The convergence of the proposed genetic algorithm for 50 and 100 
individuals: (a) using first architecture; (b) using second architecture. 

Iterations 

500 Mean 
S.D. 

1000 Mean 
S.D. 

2000 Mean 
S.D. 

Gain (%) 

Iterations 

500 Mean 
S.D. 

1000 Mean 
S.D. 

2000 Mean 
S.D. 

Gain (%) 

TABLE IV 
RESULTS FOR GA 

I Fitness 
3 processors 
50 individuals 100 individuals 

2447.6730 2445.8930 
62.3827 61.3071 

2399.9230 2401.9930 
59.5612 74.9665 

2379.2830 2385.7330 
63.3114 70.7054 
32.2141 32.0304 

6 processors 
50 individuals 100 individuals 

2254.2800 2242.7870 
74.0134 62.4255 

2149.6600 2140.3770 
66.9043 65.4855 

2077.6200 2068.6470 
67.2494 59.3870 
40.8085 41.0642 

The value obtained using the fitness function for sequential 
execution of the third problem is equal to 5680.8. The results 
to list scheduling, LPT and SPT are presented in Table V 
considering both parallel architecture. Table VI shows the 
results also for both architectures considered found by the 
proposed genetic algorithm for 500, 1000 and 2000 iterations. 

Figure 11 depicts the convergence for the presented results. 
The convergence related to the architecture with 3 processors is 
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Fig. 10. The convergence of the proposed genetic algorithm for 50 and 100 
individuals: (a) using first architecture; (b) using second architecture. 

TABLE V 
RESULTS FOR LIST SCHEDULING, LPT AND SPT 

3 processors 
List Scheduling LPT SPT 

Mean 5464.2300 5356.8000 5495.4900 
S.D. 256.9011 255.3976 257.7374 

Gain (%) 3.8123 5.7034 3.2620 
6 processors 

List Scheduling LPT SPT 
Mean 6727.8600 6727.8000 6982.8900 
S.D. 259.8337 258.9764 260.4492 

Gain (%) -18.4315 -18.4305 -22.9209 

depicted in Figure II(a) and the one related to the architecture 
with 6 processors, in Figure 11 (b). 

Looking at the results for the second architecture, one 
can note that only GA algorithm gets some improvement. 
The other algorithms do not get improvement because of the 
communication cost and waiting time which spent more time 
than the saved one. 

X. CONCLUSIONS 

This work explored an important factor related to the par­
allelization of simulators based on the Finite Element Method 
(FEM [10]), i.e. multi-physics simulators. In this kind of sim­
ulators, there is a large set of relations between objects within 
the architecture. Distinguishing what could be a dependence 
or a simple relation is an arduous and high complex task. In 
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TABLE VI 
RESULTS FOR GA 

I Fitness 
3 processors 
50 individuals 100 individuals 

4925.2800 4838.9400 
101.4804 111.0909 

4877.0000 4796.0000 
96.3841 117.8795 

4852.7400 4772.9200 
102.7384 111.5300 
14.5765 15.9816 

6 processors 
50 individuals 100 individuals 

5350.2400 5294.6800 
147.6926 107.5116 

5269.4200 5221.0000 
148.4255 107.9098 

5232.9200 5181.1800 
154.3999 106.3545 

7.8841 8.7949 
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Fig. II. The convergence of the proposed genetic algorithm for 50 and 100 
individuals: (a) using first architecture; (b) using second architecture. 

this paper, we propose a model based on Coloured Petri Nets 
which makes the task of classifying dependencies automated. 

It was also shown in the experiments that the model is 
capable in identifying all existing dependencies in the simula­
tors associated to each presented scenario. So that, it cancels 
the possibility of classification error. Hence, the proposed 
model achieved success in its main proposal, i.e. to identify 
all dependencies between processes. 

We also proposed a scheduling algorithm, based on genetic 
algorithms, to explore the dependencies in order to define 
a schedule near the optimal one. This process can be very 
complex when considering other effects: the architecture where 
the simulations will run; the communication cost between 
jobs; and the waiting time of each processor. We evaluate 
our approach against three well known algorithms and three 
different multi-physics simulators. The results demonstrated 
that our approach was able to find excellent schedule for the 
parallel multi-physics simulators in the benchmark. 
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As a future work, we will adapt the algorithm to consider 
parallel platforms with heterogeneous processors. We will also 
compare our approach to other meta-heuristics. 
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